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3Résistance des matériaux 2025
pierre-etienne.bourban@epfl.ch

Introduction
Définitions, hypothèses
Torseurs des efforts intérieurs
Principe d’équivalence
Moments d’une aire, moments statiques, 

moments d’inertie
Traction et Compression
Bernoulli, St-Venant
Variation de températures
Pression interne
Force centrifuge
Influence du poids propre
Etat de contraintes
Cercle de Mohr
Energie de déformation
Etat bidimensionnel des contraintes 
Axes et cercles de Mohr principaux
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4Résistance des matériaux
Cisaillement
Etat de contraintes, énergie de déformation
Torsion circulaire
Etat de contraintes, isostatiques, énergie de déformation
Flexion
Rappels de statique, hyperstatique
Flexion simple, états de contraintes, déformations
Méthode des équations différentielles, déformées
Flexion combinée
Energies de déformation élastique
Critères de performance
Concentrations de contraintes
Les limites de l’élasticité

Etudes de cas :
Rails, sertissage à chaud, corde d’escalade, réservoirs 
sous pression, goupilles, chaine, vis
arbres creux, ressorts hélicoïdaux, poutres, ponts, 
flambage, etc….

https://www.marcoodermatt.ch/en/media-en
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σmax=1.2 MPa 

σmax=0.85 MPa 
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6Agenda

Lundi 15h15 cours et exo
Documents sur Moodle
Examens écrits A et B

2025
MSE 205 Résistance des Matériaux
pierre-etienne.bourban@epfl.ch

jours mois
17 février Intro , moments d'inertie exo1: Statique  
24 février Traction, Hyperstatique exo2: Moments géométriques  
3 mars Sertissagge…  Bidim exo3: Cordes, réservoirs pressurisés     

10 mars Cisaillement et torsion exo4: Goupilles, joints, agrafes
17 mars Torsion et Ressorts exo5:  Arbres creux , Révision et questions
24 mars Examen A (1/3)
31 mars Flexion, NTM Correction Exa, exo6: courbures, potence
7 avril Cisaillement, Déformée,Superposition, Hyperstatique exo7: Moments max/min 

14 avril P. non prismatique, Energie, Castigliano exo 8.1: Flêches
21 Pâques
28 avril Révision Flexion, exo 8.2 exo9  Superposition
5 mai Concentration, Flambage,Rupture exo10 :  Flambages

12 mai Questions ouvertes et prépa examen  
19 mai Examen B (2/3)
26 mai Feedbacks
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8Introduction

Structures complexes de l’ingénierie

Théorie de l’élasticité
Résistance des matériaux

Mécanique des corps solides déformables

Calculs rigoureux
Difficultés mathématiques Simplifications, expériences,comparaisons

Solutions utilisables

Elasticité (Hooke) + plasticité

Concentrations de contraintes + fluage, +fatigue, +endommagement….

Détermination des contraintes et déformations

!
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9Objectifs

σ ε

Matériaux

Géométrie initiale
Température

Effets extérieurs
(équilibre ou pas)

Conception
• structures
• joints

Géométrie 
résistante

Dimension critique

σcrit , εcrit

Valeurs et 
leurs variations avec
position x, 
temps t,
Température T…

Plasticité,
fluage,
fatigue…
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10Approches

• Théorie de l’élasticité

1. Relations σ(ε)
2. Conditions aux limites 

⇒ analyse de cas particuliers

• Résistance de matériaux
1. Cas simples d’efforts intérieurs 

correspondant à des états de σ
typiques ( traction, flexion…)

2. Etude de cas complexes en les 
combinant

S’appuie sur des essais expérimentaux
⇒ Caractérisation mécanique des  

matériaux
⇒ Essais sur pièces réelles pour 
vérification



P.-Etienne Bourban

11Hypothèses (I)

• La continuité de la matière

• L’homogénéité

• L’isotropie

P1≠P2

P1

P2

Hétérogène
interface

• •
••

Atomes Macro

Matière 
solide et 
continue

P1=P2
••

P1 P2

Homogène

21 PP =

 

P1

 

P2Isotropie Anisotropie

⇒

•
•

21 PP ≠

 

P1

 

P2

••
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12Hypothèses (II)

Conditions d’équilibre de la statique

 

Σ F = 0

Σ M = 0

• Les déformations sont proportionnels aux contraintes

• Les déformations sont petites par rapport aux dimensions de l’objet étudié

Eσ ε=Hooke (1678)

σ

ε
E
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13Définitions

forces électromagnétiques…

σ ε

2

N
m

 
  

forces surfaciques 

forces linéiques N
m

 
  

[ ]Nforces externes locales 

3

N
m

 
  

forces massiques (gravité) 

•

 

F

 

F1

 

F2
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14Efforts intérieurs

A B

S

section

•
G

 

R = ΣB Fi

M = Σri ∧Fi

Torseur des efforts 
intérieurs

• Remplacer l’action de B par:

résultante des forces

moment résultant appliqué au 
centre de gravité de la section S

 

R =

 

M =

 

F

 

M

 

R•

 

Fi

 

ri
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15Efforts intérieurs
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16Efforts intérieurs

x

y

z
 

M f

 

T

 

Tz

 

Ty

 

M fz

 

M fy
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17Contraintes

 

Pa =
N
m2 ; MPa =

N
mm2 ; 1MPa =10bar; 1bar =105 Pa; Kg

mm2 =
10N
mm2 =10 MPa =100bar

 
 
 

 
 
 

x

y

S

τz

G
∆S

τy

τ: contrainte tangentielle

σ: contrainte normale à ∆S
z



 

P
Résultante

sur ∆S

 = lim ∆P
∆S

=
dP
dS

 

↑lim lorsque ∆S → 0

 

P
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18Principe d’équivalence

L’action des forces intérieures spécifiques, c’est-à-dire des contraintes 
agissant sur une section d’un solide en équilibre est équivalente à…

…l’action des forces extérieures appliquées sur l’une ou l’autre des parties 
du solide séparées par la section considérée
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19Torseur des efforts intérieurs

 

N = σ ⋅ dS
S
∫∫

Ty = τ y
S
∫∫ ⋅ dS

Tz = τ z
S
∫∫ ⋅ dS

M fy
= σ ⋅ z ⋅ dS

S
∫∫

M fz
= − σ ⋅ y ⋅ dS

S
∫∫

Mt = τ z ⋅ y − τ y ⋅ z( )dS
S
∫∫

x

y
z

•
σ

 

M fz

 

M fy

y
z
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20Cas particuliers d’efforts intérieurs

• Traction/compression → si seulement si N ≠ 0 N >0 traction sur A de B
N<0 compression
σ constante sur S

• Cisaillement → ssi         ≠ 0,       constante en grandeur et direction sur S

• Torsion simple → ssi          ≠ 0, composante tangentielle varie en intensité et direction

• Flexion simple → ssi           ≠ 0 et       sont perpendiculaires

• Flexion pure → ssi        ≠   f(x)  = cste,     =0

Le torseur se réduit à

 

T

 

Mt

 

M f

 

T

 

T

 

M f

 

τ
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21Systèmes de masses coplanaires
• Moments statiques (1er ordre)

•Moments d’inertie (2ème ordre)

• Moment centrifuge ou produit d’inertie

 

MS = Σmi ⋅ ri

MSx
= Σmi ⋅ yi par  rapport  à Ox

 

I = Σmi ⋅ ri
2 ri = ri

Ix = Σmi ⋅ yi
2

Iy = Σmi ⋅ xi
2

 

Ix y = Σmi ⋅ xi yi

x

y

G (ξ,η)

mi

 

ri

 

s

O
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22• Le Centre d’inertie G(ξ,η) est le point où la masse totale M donne le 
même      que celui des mi

On peut montrer que       est nul par rapport à un axe passant par G
 

M ⋅ s = Ms ⇒ s =
Σmi ⋅ ri

Σmi

ξ =
Σmi ⋅ xi

M
=

Msy

M

η =
Msx

M x

y

G (ξ,η)

mi

 

ri

 

s

O

 

MS

 

MS
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23Moments d’une aire plane

• Moments statiques • Moment centrifuge

• Moments d’inertie

 

MS = r ⋅ dS
S
∫

MSx
= y ⋅ dS

S
∫

MSy
= x ⋅ dS

S
∫

 

I = r2 ⋅ dS
S
∫

Ix = y 2 ⋅ dS
S
∫

Iy = x 2 ⋅ dS
S
∫

I = Ix + Iy = Ipolaire

 

Ixy = x ⋅ y ⋅ dS
S
∫

 

S = dS
S
∫

(caractéristiques géométriques des sections)
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24Exo: Centres d’inertie

G(ξ,η) =?

O

x

y

 

4R
3π

R

 

η =
4R
3π

O

x

H

B

dS
dy

y

x

 

MSx
= y ⋅ dS

S
∫ où B

x
=

H
y

et dS = x ⋅ dy

= y ⋅
B ⋅ y
H

⋅ dy
 
 
 

 
 
 

0

H

∫

MSx
=

H 2B
3

où S =
BH
2

MSx
= η ⋅ S ⇒ η =

MSx

S
=

2
3

H
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25Exo: Moment d’une aire plane

 

Ix' = y '2 ⋅dA
A
∫ = y '2 ⋅B ⋅ dy '

0

H

∫ =
BH 3

3

Iy' =
HB3

3
I = Ix' + Iy '

Ix'y ' = x'⋅y'⋅dA
A
∫ = x'⋅y'⋅dx'

0

B

∫
0

H

∫ dy '= B2H 2

4

Moments d’inertie d’une section rectangulaire par rapport à O et G
Cas A: origine O’ sur un des sommets

O’

H

x’

B

dA
dy’

y’

Gy’
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26Moment d’une aire plane: translation des axes
Moment d’inertie d’une section rectangulaire par rapport à O et G

b

y

O
x

y'

x’O’ a 

r

 

r'

 

δ

Translation des axes

 

r' = δ + r
x'= x + a
y'= y + b

H
O ≡G x

B

dA
dy

y

Cas B: origine O≡ G

⇒
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Ix' = y '2 ⋅dA
A
∫ = y + b( )2 dA = y 2∫∫ dA + 2b ydA∫ + b2 dA∫

Ix' = Ix + 2b ⋅ Msx
+ b2A

Idem pour Iy’,        même raisonnement pour Ixy

Si O ≡ G centre d’inertie     ⇒ Ms=0

 

Ix' = Ix + b2A
Iy' = Iy + a2A
Ix'y ' = Ixy + abA

a =
B
2

et b =
H
2

 

Ix = Ix' − b2A =
B ⋅ H 3

3
−

H
2

 
 
 

 
 
 

2

BH =
BH 3

12

Iy = Iy' − a2A =
B 3H
12

Ixy = Ix 'y' − abA =
B2 H 2

4
−

B
2

H
2

BH = 0

Car les axes xy sont principaux d’inertie

⇒
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Rotation ≡
u = x cosθ + y sinθ
v = y cosθ − x sinθ

y

xO

x

y u

v dA

θ

 

r

Rotation des axes et moments principaux d’inertie

( ) ( )

( ) ( ) θθ

θθ

θθθ

θθθθ

θθθθ

2sin2cos
2
1

2
1

pouridem

2sin2cos
2
1

2
1

2sin
2

2cos1
2

2cos1
trie trigonoméla avec

cossin2sincos

cossin2sincos
22

2222

2

xyyxyxv

v

xyyxyxu

xyyx

xyyx

A
u

IIIIII

I

IIIIII

III

III

dAyxdAxdAy

dAvI

+−−+=

−−++=

−
−

+
+

=

−+=

−+=

=

∫∫∫

∫
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( )

xy

xy

yx

xy

vu

II
I

II
I

θtg
θ)d(

d
θ)(d

Id
θd

Id

−
=

−
−=⇒=

+=−

+

22
20

2
par donnés sont extrema les

22

:2θ àrapport par  I etIdérivant  en
2

II
  moyennevaleur  la deautour  oscillentIet I

vu

yx
vu

Rotation des axes et moments principaux d’inertie

Cette relation est satisfaite pour 2 valeurs de θ entre 0 et π qui correspondent à un maximum I1 et 
un minimum I2 qui sont les moments principaux d’inertie.

Les axes correspondant avec θ satisfaisant la relation sont les axes principaux d’inertie pour 
lesquels le moment centrifuge I12 est nul par définition.
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30Moments d’inertie

• Moments statiques     MSx  , MSy

• Moments d’inertie     Ix  , Iy  , Ip=Ix+Iy

• Moment centrifuge ou produit d’inertie     Ixy

• Centre d’inertie    G(ξ,η)

• Axes principaux d’inertie Ix max=I1          
Iy max=I2 yx

xy

II
I

tg
−

−=
2

2θ

θ =0

θ =π
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31Moments d’inertie

O≡G

 

Ix =
BH 3

3

Iy =
B3H

3

Ix y =
B2H 2

4

 

Ix =
BH 3

12

Iy =
B3H
12

Ix y = 0

 

Ix = Iy =
π D4

64
=

π R4

4

 

Ix =
π
4

Re
4 − Ri

4( )

 

Ix =
BH 3

4

 

Ix =
BH 3

36

B

O

H y

y

B

H

O

y

x

x
Re

Ri

y

x x

O≡G

B

H

y

x

y

x

4
'

4

9
8

8

0
8
1

RI

I

RI

x

yx

y







 −=

=

=

π
π

π

x

y

x’

O
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32Appuis 2D

Bedford, 2003
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33Appuis 3D

Bedford, 2003
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